R16

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY: PUTTUR

(AUTONOMOUS)

B.Tech II Year I Semester Supplementary Examinations November-2020 RANDOM SIGNAL & STOCHASTIC PROCESSES

(Electronics & Communication Engineering)

Time: 3 hours

Max. Marks: 60

7M

6M

(Answer all Five Units 5 x 12 = 60 Marks)

- **1 a** Explain about Baye's theorem?
 - b In a bolt factory, machines A, B, C manufacture 30%, 30%, 40% of the total output 5M respectively. From their outputs 4, 5, 3 percents are defective bolt. A bolt is drawn at random and found to be defective. What are the probabilities that it was manufacturing by machines A, B and C?

OR

- **a** Explain about probability density function and State its properties?
 - **b** The random variable X has the discrete variable in the set {-1,-0.5, 0.7, 1.5, 3}. The **6M** corresponding probabilities are assumed to be a {0.1, 0.2, 0.1, 0.4, 0.2}. Plot the distribution function?

UNIT-II

3 a Discuss about the Sum of Two Random Variables?
6M
b Statistically independent random variables X and Y have densities

f_X (x)=5u(x)e^{-5x}
f_Y(y)= 2u(x)e^{-2y}
find the density of the sum W= X+Y.

4 a Explain central limit theorem?
b Find the distribution function FX,Y(x,y) and the marginal distribution functions?
6M

		(\mathbf{X}, \mathbf{Y})	(0, 0)	(1, 2)	(2, 3)	(3, 2)	
		P(X, Y)	0.2	0.3	0.4	0.1	
				UNIT-II	[
5	a	What is ACF? State and explain any four properties of ACF?					6M
	b	Explain about first order, second, wide-sense and strict sense stationary process.					
				OR			
6	a	Show that the autocorrelation function of a stationary random process is an even					n 7M
		function of τ .					
	b	b Give the classification of random processes.					5M
				UNIT-IV	7		
7	a	a Briefly explain the concept of cross power density spectrum.					6M
	b	Find the cross correlation functions of sin ωt and cos ωt .					6M
				OR			
8	a	a Discuss the properties of cross power density spectrum.					6M
	b	Discuss the relation between cross power spectrum and cross correlation function.					6M

UNIT-V

- 9 a Explain about LTI system.6Mb Find the power density spectrum of response of a linear system.6MOR0R
- 10 a Derive the relation between PSD of input and output random process of an LTI 6M system.
 - **b** Discuss about cross correlation between the input X (t) and output Y (t). **6M** *** END ***